C++ Templates

C++ Templates




Templates are the foundation of generic programming, which involves writing code in a way that is independent of any particular type.
A template is a blueprint or formula for creating a generic class or a function. The library containers like iterators and algorithms are examples of generic programming and have been developed using template concept.
There is a single definition of each container, such as vector, but we can define many different kinds of vectors for example, vector <int> or vector <string>.
You can use templates to define functions as well as classes, let us see how they work −

Function Template

The general form of a template function definition is shown here −
template <class type> ret-type func-name(parameter list) {
   // body of function
} 
Here, type is a placeholder name for a data type used by the function. This name can be used within the function definition.
The following is the example of a function template that returns the maximum of two values −
#include <iostream>
#include <string>

using namespace std;

template <typename T>
inline T const& Max (T const& a, T const& b) { 
   return a < b ? b:a; 
}

int main () {
   int i = 39;
   int j = 20;
   cout << "Max(i, j): " << Max(i, j) << endl; 

   double f1 = 13.5; 
   double f2 = 20.7; 
   cout << "Max(f1, f2): " << Max(f1, f2) << endl; 

   string s1 = "Hello"; 
   string s2 = "World"; 
   cout << "Max(s1, s2): " << Max(s1, s2) << endl; 

   return 0;
}
If we compile and run above code, this would produce the following result −
Max(i, j): 39
Max(f1, f2): 20.7
Max(s1, s2): World

Class Template

Just as we can define function templates, we can also define class templates. The general form of a generic class declaration is shown here −
template <class type> class class-name {
   .
   .
   .
}
Here, type is the placeholder type name, which will be specified when a class is instantiated. You can define more than one generic data type by using a comma-separated list.
Following is the example to define class Stack<> and implement generic methods to push and pop the elements from the stack −
#include <iostream>
#include <vector>
#include <cstdlib>
#include <string>
#include <stdexcept>

using namespace std;

template <class T>
class Stack { 
   private: 
      vector<T> elems;    // elements 

   public: 
      void push(T const&);  // push element 
      void pop();               // pop element 
      T top() const;            // return top element 
      
      bool empty() const {      // return true if empty.
         return elems.empty(); 
      } 
}; 

template <class T>
void Stack<T>::push (T const& elem) { 
   // append copy of passed element 
   elems.push_back(elem);    
} 

template <class T>
void Stack<T>::pop () { 
   if (elems.empty()) { 
      throw out_of_range("Stack<>::pop(): empty stack"); 
   }
   
   // remove last element 
   elems.pop_back();         
} 

template <class T>
T Stack<T>::top () const { 
   if (elems.empty()) { 
      throw out_of_range("Stack<>::top(): empty stack"); 
   }
   
   // return copy of last element 
   return elems.back();      
} 

int main() { 
   try {
      Stack<int>         intStack;  // stack of ints 
      Stack<string> stringStack;    // stack of strings 

      // manipulate int stack 
      intStack.push(7); 
      cout << intStack.top() <<endl; 

      // manipulate string stack 
      stringStack.push("hello"); 
      cout << stringStack.top() << std::endl; 
      stringStack.pop(); 
      stringStack.pop(); 
   } catch (exception const& ex) { 
      cerr << "Exception: " << ex.what() <<endl; 
      return -1;
   } 
} 
If we compile and run above code, this would produce the following result −
7
hello
Exception: Stack<>::pop(): empty stack

Overloading function templates 


You may overload a function template either by a non-template function or by another function template.
If you call the name of an overloaded function template, the compiler will try to deduce its template arguments and check its explicitly declared template arguments. If successful, it will instantiate a function template specialization, then add this specialization to the set of candidate functions used in overload resolution. The compiler proceeds with overload resolution, choosing the most appropriate function from the set of candidate functions. Non-template functions take precedence over template functions. The following example describes this:
#include <iostream>
using namespace std;

template<class T> void f(T x, T y) { cout << "Template" << endl; }

void f(int w, int z) { cout << "Non-template" << endl; }

int main() {
   f( 1 ,  2 );
   f('a', 'b');
   f( 1 , 'b');
}
The following is the output of the above example:
Non-template
Template
Non-template
The function call f(1, 2) could match the argument types of both the template function and the non-template function. The non-template function is called because a non-template function takes precedence in overload resolution.
The function call f('a', 'b') can only match the argument types of the template function. The template function is called.
Argument deduction fails for the function call f(1, 'b'); the compiler does not generate any template function specialization and overload resolution does not take place. The non-template function resolves this function call after using the standard conversion from char to int for the function argument 'b'.

Comments