C++ Classes and Objects
C++ Classes and Objects
The main purpose of C++ programming is to add object orientation to the C programming language and classes are the central feature of C++ that supports object-oriented programming and are often called user-defined types.
A class is used to specify the form of an object and it combines data representation and methods for manipulating that data into one neat package. The data and functions within a class are called members of the class.
C++ Class Definitions
When you define a class, you define a blueprint for a data type. This doesn't actually define any data, but it does define what the class name means, that is, what an object of the class will consist of and what operations can be performed on such an object.
A class definition starts with the keyword class followed by the class name; and the class body, enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a list of declarations. For example, we defined the Box data type using the keyword class as follows −
class Box { public: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box };
The keyword public determines the access attributes of the members of the class that follows it. A public member can be accessed from outside the class anywhere within the scope of the class object. You can also specify the members of a class as private or protected which we will discuss in a sub-section.
Define C++ Objects
A class provides the blueprints for objects, so basically an object is created from a class. We declare objects of a class with exactly the same sort of declaration that we declare variables of basic types. Following statements declare two objects of class Box −
Box Box1; // Declare Box1 of type Box Box Box2; // Declare Box2 of type Box
Both of the objects Box1 and Box2 will have their own copy of data members.
Accessing the Data Members
The public data members of objects of a class can be accessed using the direct member access operator (.). Let us try the following example to make the things clear −
#include <iostream> using namespace std; class Box { public: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box }; int main() { Box Box1; // Declare Box1 of type Box Box Box2; // Declare Box2 of type Box double volume = 0.0; // Store the volume of a box here // box 1 specification Box1.height = 5.0; Box1.length = 6.0; Box1.breadth = 7.0; // box 2 specification Box2.height = 10.0; Box2.length = 12.0; Box2.breadth = 13.0; // volume of box 1 volume = Box1.height * Box1.length * Box1.breadth; cout << "Volume of Box1 : " << volume <<endl; // volume of box 2 volume = Box2.height * Box2.length * Box2.breadth; cout << "Volume of Box2 : " << volume <<endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Volume of Box1 : 210 Volume of Box2 : 1560
It is important to note that private and protected members can not be accessed directly using direct member access operator (.). We will learn how private and protected members can be accessed.
Classes and Objects in Detail
So far, you have got very basic idea about C++ Classes and Objects. There are further interesting concepts related to C++ Classes and Objects which we will discuss in various sub-sections listed below −
Sr.No | Concept & Description |
---|---|
1 | Class Member Functions
A member function of a class is a function that has its definition or its prototype within the class definition like any other variable.
|
2 | Class Access Modifiers
A class member can be defined as public, private or protected. By default members would be assumed as private.
|
3 | Constructor & Destructor
A class constructor is a special function in a class that is called when a new object of the class is created. A destructor is also a special function which is called when created object is deleted.
|
4 | Copy Constructor
The copy constructor is a constructor which creates an object by initializing it with an object of the same class, which has been created previously.
|
5 | Friend Functions
A friend function is permitted full access to private and protected members of a class.
|
6 | Inline Functions
With an inline function, the compiler tries to expand the code in the body of the function in place of a call to the function.
|
7 | this Pointer
Every object has a special pointer this which points to the object itself.
|
8 | Pointer to C++ Classes
A pointer to a class is done exactly the same way a pointer to a structure is. In fact a class is really just a structure with functions in it.
|
9 | Static Members of a Class
Both data members and function members of a class can be declared as static.
|
C++ Class Member Functions
A member function of a class is a function that has its definition or its prototype within the class definition like any other variable. It operates on any object of the class of which it is a member, and has access to all the members of a class for that object.
Let us take previously defined class to access the members of the class using a member function instead of directly accessing them −
class Box { public: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box double getVolume(void);// Returns box volume };
Member functions can be defined within the class definition or separately using scope resolution operator, : −. Defining a member function within the class definition declares the function inline, even if you do not use the inline specifier. So either you can define Volume() function as below −
class Box { public: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box double getVolume(void) { return length * breadth * height; } };
If you like, you can define the same function outside the class using the scope resolution operator (::) as follows −
double Box::getVolume(void) { return length * breadth * height; }
Here, only important point is that you would have to use class name just before :: operator. A member function will be called using a dot operator (.) on a object where it will manipulate data related to that object only as follows −
Box myBox; // Create an object myBox.getVolume(); // Call member function for the object
Let us put above concepts to set and get the value of different class members in a class −
When the above code is compiled and executed, it produces the following result −#include <iostream> using namespace std; class Box { public: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box // Member functions declaration double getVolume(void); void setLength( double len ); void setBreadth( double bre ); void setHeight( double hei ); }; // Member functions definitions double Box::getVolume(void) { return length * breadth * height; } void Box::setLength( double len ) { length = len; } void Box::setBreadth( double bre ) { breadth = bre; } void Box::setHeight( double hei ) { height = hei; } // Main function for the program int main() { Box Box1; // Declare Box1 of type Box Box Box2; // Declare Box2 of type Box double volume = 0.0; // Store the volume of a box here // box 1 specification Box1.setLength(6.0); Box1.setBreadth(7.0); Box1.setHeight(5.0); // box 2 specification Box2.setLength(12.0); Box2.setBreadth(13.0); Box2.setHeight(10.0); // volume of box 1 volume = Box1.getVolume(); cout << "Volume of Box1 : " << volume <<endl; // volume of box 2 volume = Box2.getVolume(); cout << "Volume of Box2 : " << volume <<endl; return 0; }
Volume of Box1 : 210 Volume of Box2 : 1560
C++ Class Access Modifiers
Data hiding is one of the important features of Object Oriented Programming which allows preventing the functions of a program to access directly the internal representation of a class type. The access restriction to the class members is specified by the labeled public, private, and protected sections within the class body. The keywords public, private, and protected are called access specifiers.
A class can have multiple public, protected, or private labeled sections. Each section remains in effect until either another section label or the closing right brace of the class body is seen. The default access for members and classes is private.
class Base { public: // public members go here protected: // protected members go here private: // private members go here };
The public Members
A public member is accessible from anywhere outside the class but within a program. You can set and get the value of public variables without any member function as shown in the following example −
#include <iostream> using namespace std; class Line { public: double length; void setLength( double len ); double getLength( void ); }; // Member functions definitions double Line::getLength(void) { return length ; } void Line::setLength( double len) { length = len; } // Main function for the program int main() { Line line; // set line length line.setLength(6.0); cout << "Length of line : " << line.getLength() <<endl; // set line length without member function line.length = 10.0; // OK: because length is public cout << "Length of line : " << line.length <<endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Length of line : 6 Length of line : 10
The private Members
A private member variable or function cannot be accessed, or even viewed from outside the class. Only the class and friend functions can access private members.
By default all the members of a class would be private, for example in the following class width is a private member, which means until you label a member, it will be assumed a private member −
class Box { double width; public: double length; void setWidth( double wid ); double getWidth( void ); };
Practically, we define data in private section and related functions in public section so that they can be called from outside of the class as shown in the following program.
#include <iostream> using namespace std; class Box { public: double length; void setWidth( double wid ); double getWidth( void ); private: double width; }; // Member functions definitions double Box::getWidth(void) { return width ; } void Box::setWidth( double wid ) { width = wid; } // Main function for the program int main() { Box box; // set box length without member function box.length = 10.0; // OK: because length is public cout << "Length of box : " << box.length <<endl; // set box width without member function // box.width = 10.0; // Error: because width is private box.setWidth(10.0); // Use member function to set it. cout << "Width of box : " << box.getWidth() <<endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Length of box : 10 Width of box : 10
The protected Members
A protected member variable or function is very similar to a private member but it provided one additional benefit that they can be accessed in child classes which are called derived classes.
You will learn derived classes and inheritance in next chapter. For now you can check following example where I have derived one child class SmallBox from a parent class Box.
Following example is similar to above example and here widthmember will be accessible by any member function of its derived class SmallBox.
#include <iostream> using namespace std; class Box { protected: double width; }; class SmallBox:Box { // SmallBox is the derived class. public: void setSmallWidth( double wid ); double getSmallWidth( void ); }; // Member functions of child class double SmallBox::getSmallWidth(void) { return width ; } void SmallBox::setSmallWidth( double wid ) { width = wid; } // Main function for the program int main() { SmallBox box; // set box width using member function box.setSmallWidth(5.0); cout << "Width of box : "<< box.getSmallWidth() << endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Width of box : 5
C++ Class Constructor and Destructor
The Class Constructor
A class constructor is a special member function of a class that is executed whenever we create new objects of that class.
A constructor will have exact same name as the class and it does not have any return type at all, not even void. Constructors can be very useful for setting initial values for certain member variables.
Following example explains the concept of constructor −
#include <iostream> using namespace std; class Line { public: void setLength( double len ); double getLength( void ); Line(); // This is the constructor private: double length; }; // Member functions definitions including constructor Line::Line(void) { cout << "Object is being created" << endl; } void Line::setLength( double len ) { length = len; } double Line::getLength( void ) { return length; } // Main function for the program int main() { Line line; // set line length line.setLength(6.0); cout << "Length of line : " << line.getLength() <<endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Object is being created Length of line : 6
Parameterized Constructor
A default constructor does not have any parameter, but if you need, a constructor can have parameters. This helps you to assign initial value to an object at the time of its creation as shown in the following example −
#include <iostream> using namespace std; class Line { public: void setLength( double len ); double getLength( void ); Line(double len); // This is the constructor private: double length; }; // Member functions definitions including constructor Line::Line( double len) { cout << "Object is being created, length = " << len << endl; length = len; } void Line::setLength( double len ) { length = len; } double Line::getLength( void ) { return length; } // Main function for the program int main() { Line line(10.0); // get initially set length. cout << "Length of line : " << line.getLength() <<endl; // set line length again line.setLength(6.0); cout << "Length of line : " << line.getLength() <<endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Object is being created, length = 10 Length of line : 10 Length of line : 6
Using Initialization Lists to Initialize Fields
In case of parameterized constructor, you can use following syntax to initialize the fields −
Line::Line( double len): length(len) { cout << "Object is being created, length = " << len << endl; }
Above syntax is equal to the following syntax −
Line::Line( double len) { cout << "Object is being created, length = " << len << endl; length = len; }
If for a class C, you have multiple fields X, Y, Z, etc., to be initialized, then use can use same syntax and separate the fields by comma as follows −
C::C( double a, double b, double c): X(a), Y(b), Z(c) { .... }
The Class Destructor
A destructor is a special member function of a class that is executed whenever an object of it's class goes out of scope or whenever the delete expression is applied to a pointer to the object of that class.
A destructor will have exact same name as the class prefixed with a tilde (~) and it can neither return a value nor can it take any parameters. Destructor can be very useful for releasing resources before coming out of the program like closing files, releasing memories etc.
Following example explains the concept of destructor −
#include <iostream> using namespace std; class Line { public: void setLength( double len ); double getLength( void ); Line(); // This is the constructor declaration ~Line(); // This is the destructor: declaration private: double length; }; // Member functions definitions including constructor Line::Line(void) { cout << "Object is being created" << endl; } Line::~Line(void) { cout << "Object is being deleted" << endl; } void Line::setLength( double len ) { length = len; } double Line::getLength( void ) { return length; } // Main function for the program int main() { Line line; // set line length line.setLength(6.0); cout << "Length of line : " << line.getLength() <<endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Object is being created Length of line : 6 Object is being deleted
C++ Copy Constructor
The copy constructor is a constructor which creates an object by initializing it with an object of the same class, which has been created previously. The copy constructor is used to −
- Initialize one object from another of the same type.
- Copy an object to pass it as an argument to a function.
- Copy an object to return it from a function.
If a copy constructor is not defined in a class, the compiler itself defines one.If the class has pointer variables and has some dynamic memory allocations, then it is a must to have a copy constructor. The most common form of copy constructor is shown here −
classname (const classname &obj) { // body of constructor }
Here, obj is a reference to an object that is being used to initialize another object.
#include <iostream> using namespace std; class Line { public: int getLength( void ); Line( int len ); // simple constructor Line( const Line &obj); // copy constructor ~Line(); // destructor private: int *ptr; }; // Member functions definitions including constructor Line::Line(int len) { cout << "Normal constructor allocating ptr" << endl; // allocate memory for the pointer; ptr = new int; *ptr = len; } Line::Line(const Line &obj) { cout << "Copy constructor allocating ptr." << endl; ptr = new int; *ptr = *obj.ptr; // copy the value } Line::~Line(void) { cout << "Freeing memory!" << endl; delete ptr; } int Line::getLength( void ) { return *ptr; } void display(Line obj) { cout << "Length of line : " << obj.getLength() <<endl; } // Main function for the program int main() { Line line(10); display(line); return 0; }
When the above code is compiled and executed, it produces the following result −
Normal constructor allocating ptr Copy constructor allocating ptr. Length of line : 10 Freeing memory! Freeing memory!
Let us see the same example but with a small change to create another object using existing object of the same type −
#include <iostream> using namespace std; class Line { public: int getLength( void ); Line( int len ); // simple constructor Line( const Line &obj); // copy constructor ~Line(); // destructor private: int *ptr; }; // Member functions definitions including constructor Line::Line(int len) { cout << "Normal constructor allocating ptr" << endl; // allocate memory for the pointer; ptr = new int; *ptr = len; } Line::Line(const Line &obj) { cout << "Copy constructor allocating ptr." << endl; ptr = new int; *ptr = *obj.ptr; // copy the value } Line::~Line(void) { cout << "Freeing memory!" << endl; delete ptr; } int Line::getLength( void ) { return *ptr; } void display(Line obj) { cout << "Length of line : " << obj.getLength() <<endl; } // Main function for the program int main() { Line line1(10); Line line2 = line1; // This also calls copy constructor display(line1); display(line2); return 0; }
When the above code is compiled and executed, it produces the following result −
Normal constructor allocating ptr Copy constructor allocating ptr. Copy constructor allocating ptr. Length of line : 10 Freeing memory! Copy constructor allocating ptr. Length of line : 10 Freeing memory! Freeing memory! Freeing memory!
C++ Friend Functions
A friend function of a class is defined outside that class' scope but it has the right to access all private and protected members of the class. Even though the prototypes for friend functions appear in the class definition, friends are not member functions.
A friend can be a function, function template, or member function, or a class or class template, in which case the entire class and all of its members are friends.
To declare a function as a friend of a class, precede the function prototype in the class definition with keyword friend as follows −
class Box { double width; public: double length; friend void printWidth( Box box ); void setWidth( double wid ); };
To declare all member functions of class ClassTwo as friends of class ClassOne, place a following declaration in the definition of class ClassOne −
friend class ClassTwo;
Consider the following program −
#include <iostream> using namespace std; class Box { double width; public: friend void printWidth( Box box ); void setWidth( double wid ); }; // Member function definition void Box::setWidth( double wid ) { width = wid; } // Note: printWidth() is not a member function of any class. void printWidth( Box box ) { /* Because printWidth() is a friend of Box, it can directly access any member of this class */ cout << "Width of box : " << box.width <<endl; } // Main function for the program int main() { Box box; // set box width without member function box.setWidth(10.0); // Use friend function to print the wdith. printWidth( box ); return 0; }
When the above code is compiled and executed, it produces the following result −
Width of box : 10
C++ Inline Functions
C++ inline function is powerful concept that is commonly used with classes. If a function is inline, the compiler places a copy of the code of that function at each point where the function is called at compile time.
Any change to an inline function could require all clients of the function to be recompiled because compiler would need to replace all the code once again otherwise it will continue with old functionality.
To inline a function, place the keyword inline before the function name and define the function before any calls are made to the function. The compiler can ignore the inline qualifier in case defined function is more than a line.
A function definition in a class definition is an inline function definition, even without the use of the inline specifier.
Following is an example, which makes use of inline function to return max of two numbers −
#include <iostream> using namespace std; inline int Max(int x, int y) { return (x > y)? x : y; } // Main function for the program int main() { cout << "Max (20,10): " << Max(20,10) << endl; cout << "Max (0,200): " << Max(0,200) << endl; cout << "Max (100,1010): " << Max(100,1010) << endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Max (20,10): 20 Max (0,200): 200 Max (100,1010): 1010
C++ this Pointer
Every object in C++ has access to its own address through an important pointer called this pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this may be used to refer to the invoking object.
Friend functions do not have a this pointer, because friends are not members of a class. Only member functions have a thispointer.
Let us try the following example to understand the concept of this pointer −
#include <iostream> using namespace std; class Box { public: // Constructor definition Box(double l = 2.0, double b = 2.0, double h = 2.0) { cout <<"Constructor called." << endl; length = l; breadth = b; height = h; } double Volume() { return length * breadth * height; } int compare(Box box) { return this->Volume() > box.Volume(); } private: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box }; int main(void) { Box Box1(3.3, 1.2, 1.5); // Declare box1 Box Box2(8.5, 6.0, 2.0); // Declare box2 if(Box1.compare(Box2)) { cout << "Box2 is smaller than Box1" <<endl; } else { cout << "Box2 is equal to or larger than Box1" <<endl; } return 0; }
When the above code is compiled and executed, it produces the following result −
Constructor called. Constructor called. Box2 is equal to or larger than Box1
Pointer to C++ Classes
A pointer to a C++ class is done exactly the same way as a pointer to a structure and to access members of a pointer to a class you use the member access operator -> operator, just as you do with pointers to structures. Also as with all pointers, you must initialize the pointer before using it.
Let us try the following example to understand the concept of pointer to a class −
#include <iostream> using namespace std; class Box { public: // Constructor definition Box(double l = 2.0, double b = 2.0, double h = 2.0) { cout <<"Constructor called." << endl; length = l; breadth = b; height = h; } double Volume() { return length * breadth * height; } private: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box }; int main(void) { Box Box1(3.3, 1.2, 1.5); // Declare box1 Box Box2(8.5, 6.0, 2.0); // Declare box2 Box *ptrBox; // Declare pointer to a class. // Save the address of first object ptrBox = &Box1; // Now try to access a member using member access operator cout << "Volume of Box1: " << ptrBox->Volume() << endl; // Save the address of first object ptrBox = &Box2; // Now try to access a member using member access operator cout << "Volume of Box2: " << ptrBox->Volume() << endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Constructor called. Constructor called. Volume of Box1: 5.94 Volume of Box2: 102
Static Members of a C++ Class
We can define class members static using static keyword. When we declare a member of a class as static it means no matter how many objects of the class are created, there is only one copy of the static member.
A static member is shared by all objects of the class. All static data is initialized to zero when the first object is created, if no other initialization is present. We can't put it in the class definition but it can be initialized outside the class as done in the following example by redeclaring the static variable, using the scope resolution operator :: to identify which class it belongs to.
Let us try the following example to understand the concept of static data members −
#include <iostream> using namespace std; class Box { public: static int objectCount; // Constructor definition Box(double l = 2.0, double b = 2.0, double h = 2.0) { cout <<"Constructor called." << endl; length = l; breadth = b; height = h; // Increase every time object is created objectCount++; } double Volume() { return length * breadth * height; } private: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box }; // Initialize static member of class Box int Box::objectCount = 0; int main(void) { Box Box1(3.3, 1.2, 1.5); // Declare box1 Box Box2(8.5, 6.0, 2.0); // Declare box2 // Print total number of objects. cout << "Total objects: " << Box::objectCount << endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Constructor called. Constructor called. Total objects: 2
Static Function Members
By declaring a function member as static, you make it independent of any particular object of the class. A static member function can be called even if no objects of the class exist and the static functions are accessed using only the class name and the scope resolution operator ::.
A static member function can only access static data member, other static member functions and any other functions from outside the class.
Static member functions have a class scope and they do not have access to the this pointer of the class. You could use a static member function to determine whether some objects of the class have been created or not.
Let us try the following example to understand the concept of static function members −
#include <iostream> using namespace std; class Box { public: static int objectCount; // Constructor definition Box(double l = 2.0, double b = 2.0, double h = 2.0) { cout <<"Constructor called." << endl; length = l; breadth = b; height = h; // Increase every time object is created objectCount++; } double Volume() { return length * breadth * height; } static int getCount() { return objectCount; } private: double length; // Length of a box double breadth; // Breadth of a box double height; // Height of a box }; // Initialize static member of class Box int Box::objectCount = 0; int main(void) { // Print total number of objects before creating object. cout << "Inital Stage Count: " << Box::getCount() << endl; Box Box1(3.3, 1.2, 1.5); // Declare box1 Box Box2(8.5, 6.0, 2.0); // Declare box2 // Print total number of objects after creating object. cout << "Final Stage Count: " << Box::getCount() << endl; return 0; }
When the above code is compiled and executed, it produces the following result −
Inital Stage Count: 0 Constructor called. Constructor called. Final Stage Count: 2
Comments
Post a Comment